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Abstract The formation of ANs and the importance of isoprene nitrates Use of field data to constrain nitrate yields
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Isoprene oxidation yields for major products (O, H,CO, MVK and MAC) are fairly well known Acknowledgements
YANs (Sprengnether, et al., 2002) and the overall oxidation reaction for isoprene can be written as follows: Formaldehyde data provided by Fried et al., NCAR.
(31%) >PNs 0- -Hydrocarbon data provided by Blake, et al. UC Irvine
° (32%)) a.) a(CsHg + OH + NO + O, > C5Hg(OH)ONO,) -Nitric acid data courtesy of Dibb, et al. UNH.
0 ' 2'0 ' 4'0 ' 6I0 ' 8I0 ' 1(')0 ' b.) (1 —a) (CsHg + OH + 30, = 20, + 0.6(H,CO) + 0.32(MVK) + 0.22(MAC) + other carbonyl products...) -Ozone data courtesy of Avery et al.
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